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Outline
• Bioassay introduction
• Assay optimization precision/cost/time, delay until 

product shows clear promise, BUT
• Bioassay is an important guide to early product 

development, high precision early is valuable (low 
precision precludes use to guide product development 
w/out many replicates)

• Statistical tools for better assays:
– Randomization 
– Experimental units
– Blocking
– Factorial, fractional factorial, and response surface designs
– Confidence intervals (particularly for no-difference experiments)
– Mixed models
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What is a bioassay?
• Measurement system based on comparing 

responses of groups of living organisms
• Not calibration based – relative potency
• Typically noisy
• Typically laborious
• Usually want several checks on assay

– Reference (standard) looks typical 
– Reference and test give “similar” dose-response 

curves
• USP prescribes additional checks
• Viral bioassays are “double trouble”
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Importance of bioassay
• Close to the clinical outcome
• Often 1st to detect problems

– stability
– impurities

• “Well characterized product” requires a lot of 
experience

• Bottleneck: Often doesn’t get enough attention 
early enough
– development & validation
– carpel tunnel by a key analyst happens
– bioassay analysis software
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Bioassay: Key idea – relative potency
Standard and test samples close together

If the curves have the same shape
- no evidence that compounds differ
- no evidence that organisms are not 
comparable

- impose common slope and asymptotes 
- estimate horizontal displacement

and interpret as relative potency
Removes variation in curve shape from 
assay to assay

What’s constant over the next 15 slides?
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What precision is needed on potency when?
• Regulatory: must have validated bioassay by Phase III (typically

need an RSD of 7% or 15% for protein or vaccine)
• Many bioassays have poor precision until late Phase II
• When evaluating changes in product production process or assay it 

is hard to find changes in potency
• To have an 80% chance of detecting a process improvement of δ

using a 5% test for an assay with a Relative Standard Deviation 
(RSD) on potency of 50% will require n assays

N σ2/δ2 δ
7 1

4
25

50%
25 25%

155 10%

Conclusions:
1) Small studies will consistently 
fail to find modest but important 
process improvements
2) “No difference” studies will 
almost always succeed
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Uses of Bioassay pre-Phase III

• Dosing animals in pre-clinical studies 
– toxicity, etc.
– efficacy

• Refining production process
• Product formulation
• Preliminary product stability
• Product uniformity 

– between lots
– within lots
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Fast Bioassay Development
• Get organized about the process
• Use statistical tools for development

– randomization
– good design of the assay (i.e.; plate layout)
– good analysis (exploit blocks, mixed models)
– factorial experiments to find important factors
– response surface to optimize critical factors
– study precision of the system early

• For production use of the assay: recast 
approach to assessing similarity
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Basic Statistics: Randomization
• Why should we randomize?

–
–
–

• Why don’t we randomize
–
–

• What does the FDA do with non-randomized 
clinical trial results? Should this standard apply 
to assays?
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Basic Statistics: Experimental Unit

• The experimental unit is the smallest unit 
randomly allocated to a distinct treatment.

• Examples:
– Mice: dose/sample assigned to cage
– Mice: sample to mouse, dose to cage (split-

plot)
– 96 well plate

• samples assigned to?
• dose assigned to?
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Basic Statistics: Expt. unit for sample? 

A1 A1 A1 B1 B1 B1 R1 R1 R1 +
A2 A2 A2 B2 B2 B2 R2 R2 R2 +
A3 A3 A3 B3 B3 B3 R3 R3 R3 +
A4 A4 A4 B4 B4 B4 R4 R4 R4 -
A5 A5 A5 B5 B5 B5 R5 R5 R5 -
A6 A6 A6 B6 B6 B6 R6 R6 R6 -

How to improve?
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Basic Statistics: Expt. unit for sample?

A1 B1 A1 R1 B1 A1 R1 B1 R1 +
A2 B2 A2 R2 B2 A2 R2 B2 R2 +
A3 B3 A3 R3 B3 A3 R3 B3 R3 +
A4 B4 A4 R4 B4 A4 R4 B4 R4 -
A5 B5 A5 R5 B5 A5 R5 B5 R5 -
A6 B6 A6 R6 B6 A6 R6 B6 R6 -

How to improve?
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Why are these designs in use?
• Physical constraints of lab equipment

– Multichannel pipettes
– Real need to work quickly in routine ways

• Strong desire to keep lab methods consistent
– randomization is an invitation for procedural mistakes

• Few statisticians, bench scientists, or assay 
managers are comfortable with experimental units

• Many bench scientists and assay managers don’t ask 
for (agricultural) statistical input early enough

• Not enough statistical input on the design of software 
for lab robots
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Uniformity trial #1
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Basic Statistics: Expt. unit for sample?

A1 R1 B1 R1 B1 A1 B1 R1 A1 +
A2 R2 B2 R2 B2 A2 B2 R2 A2 +
A3 R3 B3 R3 B3 A3 B3 R3 A3 +
A4 R4 B4 R4 B4 A4 B4 R4 A4 -
A5 R5 B5 R5 B5 A5 B5 R5 A5 -
A6 R6 B6 R6 B6 A6 B6 R6 A6 -

What are these groups of columns?
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Basic Statistics: Blocks
• Blocks are EVERYWHERE 
• Exploiting blocks is a powerful design technique; it is 

THE core idea in bioassay analysis
– Variation among blocks is removed from the analysis
– Comparisons within blocks are much more precise

• Goal: associate unwanted (uncontrollable) variation 
with blocks

• We are (almost) never interested in individual block 
means, only in the comparisons within block

• Think of variation among blocks as random, eg:
– plates, cages, days
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A split-plot with samples randomized to 
row and dose randomized to well would be:

A3 A6 A10 A2 A5 A1 A4 A9 A8 A7

R6 R9 R1 R2 R5 R10 R3 R8 R7 R4

B1 B5 B2 B8 B3 B10 B7 B9 B4 B6

R5 R1 R9 R4 R2 R8 R3 R10 R6 R3

A4 A2 A8 A7 A1 A9 A3 A10 A5 A6

B10 B3 B7 B2 B4 B5 B9 B6 B1 B8
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A strip-plot design

x x A1 B1 C1 D1 B8 A8 D8 C8 x x

x + A2 B2 C2 D2 B7 A7 D7 C7 - x

x + A3 B3 C3 D3 B6 A6 D6 C6 - x

x + A4 B4 C4 D4 B5 A5 D5 C5 - x

x + A5 B5 C5 D5 B4 A4 D4 C4 - x

x + A6 B6 C6 D6 B3 A3 D3 C3 - x

x + A7 B7 C7 D7 B2 A2 D2 C2 - x

x x A8 B8 D8 D8 B1 A1 D1 C1 x x
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Uniformity trial #2
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Designs: Factorial Experiments

Low A, B, & C

Low A & B, High C

Low A, B, & C

Low A & C, High B

Low A, B, & C

Low B & C, High A

-One Factor at a Time
A: Cell number

B: Virus number

C: Antibody amount

- 8 replicates of each pair

- Total of 48 experimental units



© David Lansky, 2005 36

Designs: Factorial Experiments

Low A, B, & C

Low A & B, High C

Low B & C, High A

Low A & C, High B

- “Efficient” OFAT

- 8 reps at each point

- 24 EU total
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Design: Factorial Experiments

- Full factorial (23) has 8 points

- Use 2 replicates of the full design

- Total of 16 experimental units
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Designs: Factorial Experiments

Contrast OFAT “eff” OFAT Full 23

A 8 8 8
B 8 8 8
C 8 8 8
A x B 0 0 8
A x C 0 0 8
B x C 0 0 8
A x B x C 0 0 8
Total EU 48 24 16
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Designs: Factorial Experiments
• Factorial experiments are vastly efficient
• Factorial experiments are the smart way to learn about 

interactions. 
• The more factors you have, the more you gain from a 

factorial approach, BUT
• Full factorials get big fast with lots of factors
• Idea: don’t run the full factorial
• With careful choices we can keep information we need 

and sacrifice the high order interactions
• See Montgomery, Douglas (2001) Design and Analysis of Experiments, 5th Edition, 

Wiley

• This is powerful, it fits well in fairly early development 
and in robustness testing
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Assay Development
• Full factorial on a set of factors

– 3 vs. 4 days 
– Antibody type (4 levels)
– Cell type (IF vs MHRF)
– Antibody amount (low and high)
– Cell number (low & high)
– Virus number (low & high)

• Goal: widen response range or reduce 
variation

• One page for each cell type*antibody type

SD
t minmax−
=
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Assay Development Sequence
• If needed for initial range finding: OFAT
• Screen many factors with fractional factorial
• Full factorial with important factors in a design 

that yields variance information
• Response surface for optimization
• Fractional factorials for robustness
• Nested designs for validation

• Take a bioassay from 50% RSD to 13% RSD on 
potency in 6-12 weeks 
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Why assess similarity in bioassay?

• Bioassay assumes 
– Test and reference contain the same active compound 
– Test and ref. differ only in conc. of active compound

• Without similarity relative potency has no meaning
• Similarity supports this key assumption
• Assessing slopes always appropriate, asymptote 

comparison essential for:
– Stability
– Comparison of assay methods
– Comparison of references
– Evaluation of changes in product
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0.1
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X

Y Reference

Test

Laboratory B:  Passes parallelism test

0.1

1

10

10 100 1000

X

Y Reference
Test

Laboratory A:  Fails parallelism test

Ex: poor conclusions from parallelism tests 

The run in Laboratory A 
fails the parallelism test 
because the low 
variability makes the 
test more sensitive

The run in Laboratory B 
passes the parallelism 
test because the high 
variability makes the 
test less sensitive
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Parallelism tests have been set up incorrectly

• Statistical tests disprove a false H0: 
• Set the false positive (or α) error rate (typically 5%) 
• Little or noisy data yields large false negative error rate –

automatically conservative

• When we want to support H0: 
• The false negative error rate is much more important 

than the false positive error rate 
• Not reasonable to expect to effectively control false 

negatives by fiddling with the false postive rate 
• Borrow technology from bioequivalence trials: use two 

one-sided tests (= confidence interval for difference with 
an indifference zone).
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Does the sample PASS parallelism?
Test CI assay is:

Sample A:    No Yes precise

Sample B:    Yes No noisy

Sample C:    No No

Sample D:    Yes Yes

Difference in slope

S
am

pl
e

90% CI for slope difference (test-reference)

Using confidence intervals with an indifference 
zone to assess parallelism

-d* 0 d*

D

C

B

A
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Mixed models handle blocks well

• Most bioassays benefit from careful 
blocking

• Mixed models handle blocks well
– This is particularly important when fitting 

linear models to bioassay data (which is 
fundamentally non-linear)

• For a good design (strip-plot) a good 
mixed model analysis has cut %RSD by 
more than half
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Summary
• Good bioassay depends on 

– great biology 
– phenomenal animal care
– careful use of statistics
– Integration of all of the above

• Bioassay precision useful early
• Bioassay development 

– Factorial experiments can help a lot
– Statistical training/coaching 
– Bioassay analysis software is often limiting
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